
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

Task Overview

Initialize

Insert/Delete queries

Batch documents arrive

Batch results return

Finalize

StartQuery/EndQuery

48 MatchDocuments

48 GetAvailResults

Some details:

1. Edit(hamming) distance threshold is no larger than 3.

2. The number of the words in a query is no larger than 5.

3. Only a-z will appear in a word.

Task Detail

void InitializeIndex(); // do the initialization at first

void StartQuery(int query_id, const char *query_str, MatchType match_type, unsigned match_distance); // insert a new query

void EndQuery(int query_id); // remove a query from the system

void MatchDocument(int doc_id, const char *doc_str); // get the filtering result which will be returned later

void GetNextAvailRes(int *p_doc_id, unsigned *p_num_res, int **p_query_ids); // return an available result

void DestroyIndex(); // do the finalization at last

Our Approach

About Parrallel

An algorithm to do similarity join with edit distance constraints.

Basic idea: If the edit distance between A and B is no larger than T

and A is split into T + 1 segments in an arbitrary way, B should

contain a substring which is same with one of the segments.

Example:

(with T = 2)

String A: abc | def | ghi

String B: abd dde gh (filtered!)

Basic implementation:

Select every substring of B(huge number!)

Improve implementation(multi-aware selection):

Choose “useful” strings: if some substring is same with a

specific segment,

a. they must have same length

b. their position should be close to each other

(Details can be found in the paper)

Other Techniques

1. We choose google sparsehash[2] as the hashmap. It achieves

much better performance in multithread environment than gcc

4.7 std::unordered_map and std::tr1::unordered_map.

2. We use SIMD[3] technology to speed up edit distance

computation, which is used in the verification stage of the

PassJoin[1] algorithm. By using SSE instruction set, which

supports 128-bit integer and floating point numbers, we can

verify 8 strings each time. By using AVX2 instruction set, which

supports 256-bit integer operations, we can verify 16 strings

each time.

Reference

[1] Guoliang Li, Dong Deng, Jiannan Wang, Jianhua Feng: PASS-

JOIN: A Partition-based Method for Similarity Joins. PVLDB 5(3):

253-264(2011)

[2] google sparsehash: https://code.google.com/p/sparsehash/

[3] SIMD introduction: http://en.wikipedia.org/wiki/SIMD

Department of Computer Science and Technology, Tsinghua University, China

Yu Jiang, Jian He, Dong Deng, Jiannan Wang

Advisor: Guoliang Li, Jianhua Feng

SIGMOD Programming Contest

St
ep

 1
.

Build
document
words
inverted
list.

In parallel

St
ep

 2
.

Similarity
search for
each
document
word.

In parallel

St
ep

 3
.

Calculate
the result
for each
document.

In parallel

Cache Similarity Search Result

Use cache data and stamped index to search if
the word is searched recently

Use normal index to search if the word haven’t
been searched for a long time

A query should appear in the result of a document if and only if we

can find a same(for kind 1) or similar(for kind 2 and 3) word in

the document for every word in the query.

In brief, the task is to filter streaming documents by a dynamic set

of exact and approximate queries.

Below is the typical workflow of the system:

3 kinds of queries:

1. Exact matching

2. Approximate matching with an edit distance threshold

3. Approximate matching with a hamming distance threshold

Some statistics:

1. The average length of the words is 6-8.

2. Each type of query accounts for one third.

3. The max number of active queries is ~500,000.

4. One document may contain about 300-3000 words.

5. Each round, the program will deal with 48 documents.

6. Queries may share words with each other. One query can

provide one unique word on average.

7. Documents in same round may share words with each other. A

word will occur in 2-3 documents on average.

8. Documents in different rounds may also share words with each

other. The words in a round will probably occur in the next

round.

Interfaces

similarity search index
we use “PassJoin”[1] algorithm to do similarity search

Why 2 kinds of index?
When a query is deleted, we just mark it as removed rather than do real deletion in the index.
So, the index and the cache will have a lot of redundant information which will slow down our computation.
Stamped index is used to speed up since we only need to search a small part of the index, but it cannot clean
redundant data. Normal index will rebuild periodically and when we use it, most redundant information is cleared.

One round Query Index

Results Pool

Result
Cache

Query Index

Result
Cache

8 parts(4 parts for edit distance, 4 parts for hamming)

Normal index: index without a time stamp on each item

Stamped index: index with a time stamp on each item

Insert into two kinds In the EDBT Similarity Search/Join

Competition, we have achieved 3 champions of

the 4 tasks. Our algorithm is based on PassJoin[1].

It’s the state of the art algorithm in such area.

About PassJoin[1]

MatchDocuments step1. We build 26 inverted lists and each list

contains only the words start with a specific letter. So we can

build these lists in parallel.

MatchDocuments step2. We have many words to search so we can

search them in parallel.

MatchDocuments step3. We have 48 documents to deal with so we

can do it in parallel.

Evaluation environment: 12 cores, 24 threads(hyper-threading).

Our setting: 12threads, using threading pool.

Insert into one part

dbgroup in Tsinghua

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

