
The Metrics

How we Made it to 1st Place on the Leaderboard
Henrik Mühe

henrik.muehe@in.tum.de
Florian Funke

florian.funke@in.tum.de

The Challenge
Implement a stream system:
The server must allow to register fuzzy string matching queries.
For each document streamed through the system, it must return the
set of queries that matched.

Q1 alien attack Edit Distance 2

Q99 stock price drop Hamming Distance 3

Document
Stream

① Search for
matching queries

② Return
matches

Q5
Q23

Q1 Match
Results

Low-Overhead Filtering
Use filters to determine if two words can be within
Edit/Hamming distance d.
Challenge: Filter must be substantially faster than
invoking the metric itself

possible match

a=1
b=2
...

z=0

The Final Leaderboard

a=2
b=3
...

z=0

"abb" "abbab"Delta Δ
1
1
...

0
∑=2

Hamming Distance

static inline unsigned similarity_hamming(__m128i a,__m128i b)
{
 __m128i mask=_mm_set1_epi8(254);
 union { __m128i a; uint64_t b[2]; } x;
 x.a=_mm_adds_epu8(_mm_xor_si128(a,b),mask);
 return (_mm_popcnt_u64(x.b[0])+_mm_popcnt_u64(x.b[1]))-(128-16);
}

• SIMD instructions
• Improved version over streaming string SSE4

Edit Distance
• Fastest available bit-parallel algorithm by Myers
• Enhanced with SIMD instructions to eliminate loop

Blazing-Fast Metric Computation

① Document deduplication, trivial
② Query word clustering, NOT trivial

Q1: justin bieber
Q2: justin timberlake
Q3: justin time

• For each query word, determine "skip words"
• Incrementally remove skip words, periodically recompute
• Skip vector for all deactivate words

Example

Algorithm

Inherent Optimizations

② Frequency Histogram (full size and folded):

① Length:

Our filters:

Team Small (sec) Big (sec) New (sec)

1 Campers (TUM) 0.081 1.938 7.515

2 RotaFortunae (Saint Petersburg University) 0.158 1.969 9.394

3 mofumofu (Tohoku University) 0.065 1.507 10.343

4 glhf 0.137 2.100 11.795

5 phoenix (Peking University) 0.585 2.320 12.794

6 StrongAccept (Tsinghua University) 0.396 3.019 12.848

51 weWillWin 18.021 N/A N/A

52 null 22.463 N/A N/A

53 ePetra 30.927 N/A N/A

54 JoblessCoders 43.174 N/A N/A

55 TangYuan 43.798 N/A N/A

...

Exact Matching: Test if two words are equal
Hamming Distance: Number of positions
that differ between two words of the same size
Levenshtein Edit Distance: Minimum number
of insert/delete/substitute operations between
two words

matchDocument(char* doc) strcpy() spawn() return

Task: MatchDocument
• Tokenization and Preparation
• spawn()
• Exact Matching
• join()
• Result compilation
• enqueue(Result)

Task:
Edit Distance

Task:
Hamming Dist.

• Hierarchically expose parallelism
• No unnecessary synchronization

Parallelism & Concurrency

Use a library!
Intel Thread Building Blocks

Match Caching
Observation
People make the same typos again and again,
e.g. "calendar" vs "calender".

Idea
• Cache misspelled (document) words with matching
 query words (for each metric and each distance).
• Probe document's hash table with misspelled word.
• Often saves the iteration through entire document.

offsetswavelets query words
ordered by
coefficients

points to first
string with

this wavelet

ordered by
wavelets

range of
potential
matches

Haar Wavelet Index

offsets waveletsdoc words
ordered by
coefficients

points to first
string with

this wavelet

ordered by
wavelets

Query Words Doc Words

...

The API
startQuery(qId,query,type,distance)
endQuery(qId)
matchDocument(docId, document)
getNextAvailableResult(docId*, n*, qId**)

