
The Metrics

How we Made it to 1st Place on the Leaderboard
Henrik Mühe

henrik.muehe@in.tum.de
Florian Funke

florian.funke@in.tum.de

The Challenge
Implement a stream system:
The server must allow to register fuzzy string matching queries.
For each document streamed through the system, it must return the
set of queries that matched.
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Low-Overhead Filtering
Use filters to determine if two words can be within
Edit/Hamming distance d.
Challenge: Filter must be substantially faster than
invoking the metric itself 
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Hamming Distance

static inline unsigned similarity_hamming(__m128i a,__m128i b)
{
    __m128i mask=_mm_set1_epi8(254);
    union { __m128i a; uint64_t b[2]; } x;
    x.a=_mm_adds_epu8(_mm_xor_si128(a,b),mask);
    return (_mm_popcnt_u64(x.b[0])+_mm_popcnt_u64(x.b[1]))-(128-16);
}

• SIMD instructions
• Improved version over streaming string SSE4

Edit Distance
• Fastest available bit-parallel algorithm by Myers
• Enhanced with SIMD instructions to eliminate loop

Blazing-Fast Metric Computation

① Document deduplication, trivial
② Query word clustering, NOT trivial

Q1: justin bieber
Q2: justin timberlake
Q3: justin time

• For each query word, determine "skip words"
• Incrementally remove skip words, periodically recompute
• Skip vector for all deactivate words

Example

Algorithm

Inherent Optimizations

② Frequency Histogram (full size and folded):

① Length:

Our filters:

Team Small (sec) Big (sec) New (sec) 

1 Campers (TUM) 0.081 1.938 7.515

2 RotaFortunae (Saint Petersburg University) 0.158 1.969 9.394

3 mofumofu (Tohoku University) 0.065 1.507 10.343

4 glhf 0.137 2.100 11.795

5 phoenix (Peking University) 0.585 2.320 12.794

6 StrongAccept (Tsinghua University) 0.396 3.019 12.848

51 weWillWin 18.021 N/A N/A

52 null 22.463 N/A N/A

53 ePetra 30.927 N/A N/A

54 JoblessCoders 43.174 N/A N/A

55 TangYuan 43.798 N/A N/A

...

Exact Matching: Test if two words are equal
Hamming Distance: Number of positions
that differ between two words of the same size
Levenshtein Edit Distance: Minimum number
of insert/delete/substitute operations between
two words

matchDocument(char* doc) strcpy() spawn() return

Task: MatchDocument
• Tokenization and Preparation
• spawn()
• Exact Matching
• join()  
• Result compilation
• enqueue(Result)

Task: 
Edit Distance

Task: 
Hamming Dist.

• Hierarchically expose parallelism
• No unnecessary synchronization

Parallelism & Concurrency

Use a library! 
Intel Thread Building Blocks

Match Caching
Observation
People make the same typos again and again,
e.g. "calendar" vs "calender".

Idea
• Cache misspelled (document) words with matching
   query words (for each metric and each distance).
• Probe document's hash table with misspelled word.
• Often saves the iteration through entire document.
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The API
startQuery(qId,query,type,distance)
endQuery(qId)
matchDocument(docId, document)
getNextAvailableResult(docId*, n*, qId**)


